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田口式二進制粒子族群最佳化演算法應用於疾病預測 

 

 

學生：吳國銓 指導教授：楊正宏 博士 

 

 

國立高雄應用科技大學資訊工程系碩士班 

 

摘要 

 

生物資訊學是一門結合統計、電腦科學應用於分子生物學的學科。基因表現(微陣

列)及單核苷酸多型性為生物資訊學範疇之一，透過電腦探索其生物意義。本文利

用田口式二進制粒子族群最佳化(特徵選取)及 K 最近鄰居法(分類問題)分析微陣列

及單核苷酸多型性資料以利疾病之預測。其中加入田口方法作為區域搜尋以改善

二進制粒子族群最佳化。實驗結果顯示，本研究方法能獲得較高的分類正確率及

挑選出最重要的特徵。因此本論文方法，能用於其他應用特徵選取方法及分類問

題的相關研究領域上。 

 

 

關鍵字：基因表現、單核苷酸多型性、二進制粒子族群最佳化、K 最近鄰居法、田

口方法 
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Hybrid Taguchi-Binary Particle Swarm Optimization for Disease 

Prediction 

 
Student：Kuo-Chuan Wu Advisors：Prof. Cheng-Hong Yang 

 
Institute of Computer Science and Information Engineering 

National Kaohsiung University of Applied Sciences 
 

ABSTRACT 
 

Bioinformatics is a study for the used of statistics and computer science in the area of 

molecular biology. Gene expression (Microarry) and single nucleotide polymorphism 

(SNP) are the bioinformatics tasks that are used for the computer to explore their 

biological information. In this thesis, it represents a disease prediction to analylize 

microarray and SNP data through machine learning. A feature selection as the binary 

particle swarm optimization (BPSO) and classification problem as K nearest neighbor 

(KNN) are used for analyzing both of the microarray and SNP data profiles in machine 

learning. The Taguchi method is used to improve BPSO for local search called 

TBPSO-KNN. The experimental results for both of the classification accuracy and the 

selected numbers of features show that the proposed method has the most important 

features and the highest accuracy. It is conceivable for implementing the feature 

selection in any other research projects. 

 

Keywords: gene expression, single nucleotide polymorphism, binary particle swarm 

optimization, K nearest neighbor, Taguchi method. 
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1. INTRODUCTION 

Since the DNA discovery first launched in 1953, many biologists began to pay their 

interest in DNA and gene decoding studies. Globlely, one after another, they 

investigated the purpose of DNA in so-called the "genetic engineering" area. Along 

with the completion of the Human Genome Project (HGP) [1], new opportunities and 

challenges has been presenting uptoday for uncovering the genetic basis of complex 

diseases via genome-wide association studies. 

The goal of the HGP is to provide a tool to help scientists to understand the human 

genetic map and decipher the genetic code. Finally, the genomic nucleotide sequence 

can be interpreted and identify all human genes functions. After the completion of the 

HGP, the researches are entering the post-genomic era and its main task for use of 

sequence is to find out the information from the genomic nucleotide. This influence 

brings out a new interpretation for many diseases in medicine. The human DNA has 3 

billion encoded base pairs of nucleotide bases are estimated. Thanks to the 

Bioinformatics discovery, biologists can perform the decoded bases independently with 

the help of computer science and statistics. For example, gene expression analysis 

(microarray), single nucleotide polymorphism (SNP), disease prediction, sequence 

analysis, sequence alignment, sequence prediction, and protein structure prediction etc 

[2-4] are popular applications for bioinformatics. 

The application of microarray data in the classification of cancer types becomes 

favorable at present. Coupled with statistical techniques, gene expression patterns have 

been used in screening for potential tumor markers. The differential expressions of 
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genes are statistically analyzed and then assigned into various classes, which is possible 

to enhance the understanding of the biological processes. The characteristics of 

microarray data have high dimension and small sample size, which make them difficult 

for general classification method to obtain the correct data of classification [5-7]. On the 

other hand, SNPs are known as the most common variant in the human genome, they 

play an important role in drug development, cancer and genetic disease research. SNPs 

are defined as single base pair positions in genomic DNA at which with different 

sequence alternatives (alleles) exist in normal individuals, these occur at appreciable 

frequency in an abundance of 1% or greater in the human population. The genome-wide 

SNP discovery, many genome-wide association studies are likely to identify multiple 

genetic variants that are associated with complicated diseases [8, 9]. 

The purpose of the classification is to build an efficient and effective model for 

predicting the class membership of data, which is expected to produce a correct label on 

the training data, and correctly predict the label on any unknown data. Determining an 

optimal feature subset is a very complex task, which proves decisive for the outcome of 

classification accuracy rate. The problem of microarray or SNPs data classification 

involves feature selection and classifier design. Feature selection is the process of 

choosing a subset of features from the original feature set and thus can be viewed as a 

principal pre-processing tool prior to solving the classification problems [10]. The goal 

of feature selection is to reduce the dimensionality of the problem and to retain the 

characteristics necessary for recognition, classification and/or the data mining process. 

A reliable selection method that obtains the relevant genes from the sample data is 

needed in order to decrease the classification accuracy rates and to avoid 
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incomprehensibility. 

Performing an exhaustive search over the entire solution space is not practical since 

this would require a long computing time associated with high cost. To overcome these 

feature selection problems, irrelevant and redundant features should be eliminated and 

only features relevant for the classification process should be considered. Deleting 

irrelevant features significantly improves the computational efficiency and lowers the 

classification accuracy rate. As many pattern recognition techniques are originally not 

designed to deal with the large amount of irrelevant or redundant features, however after 

combining feature selection techniques they become necessary to enhance pattern 

recognition efficiency [11-13]. 

The processed identifying relevant features and removing irrelevant features can be 

divided into three categories with different evaluation criteria for filters, wrapper and 

embedded models. The filtering process is separated from the classification process, and 

calculates a feature weight value for every feature. Based on this value, the better 

features are chosen to represent the original dataset. However, the filter approach does 

not account for interactions amongst features. For example: entropy-based method [14], 

information gain [15], mutual information [16], correlation-based feature selection (CFS) 

[17], etc., several methods are employed in the filter model for feature selection, The 

wrapper model uses an optimizing algorithm by adding or deleting features to produce 

various feature subset and uses a classification algorithm to evaluate the feature subset , 

such as genetic algorithm (GA) [18], tabu search [19] and particle swarm optimization 

(PSO) [10]. The embedded model uses the inductive algorithm itself as the feature 

selector so as the classifier, such as ID3 algorithm [20], C4.5 algorithm [21] and random 
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forest [22]. 

In similarity of GA, PSO is an optimizer based on population. PSO has memory of its 

own, the knowledge of good solutions is retained by all the particles and an optimal 

solution can be found by the swarms following the best particle. In contrary to a GA, 

PSO does not incorporate the crossover and mutation processes. It has much more 

profound intelligent background and can be performed more easily. Based on these 

advantages, PSO is not only suitable for scientific research, but also use in engineering 

applications [23]. However, the distribution curve of PSO demonstrates two weakness, 

namely the linearization of the curve attained in steady-state and the location of the 

median [24]. 

Many feature selection methods resulting in locally optimal solutions are therefore 

combined with a local search process to improve their accuracy. For example Oh et al. 

[18] used a local search in their genetic algorithm. In this thesis, one used the Taguchi 

method as a local search method in PSO. The Taguchi method uses many ideas from 

statistical experimental design to improve or optimize products, processes and 

equipment. The Taguchi method uses two major tools: signal-to-noise ratio (SNR) 

measures the quality and orthogonal arrays (OAs) are used to study many designed 

parameters simultaneously. It has been successfully applied in machine learning and 

data mining, e.g., combined data mining and electrical discharge machining [25]. Sohn 

and Shin used the Taguchi experimental design for the Monte Carlo simulation of 

classifier combination methods [26]. Kwak and Choi used the Taguchi method for 

feature selection for classification problems [27]. Chen et al. optimized neural network 

parameter used Taguchi method [28]. 
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The content of this thesis is organized as follow. In section 2, the detail descriptions 

of machine learning are given. The correlation-based feature selection, particle swarm 

optimization, Taguchi method, K nearest neighbor and hybrid Taguchi-binary particle 

swarm optimization are described in chapter 3. Chapter 4 is results and discussion. 

Finally, conclusion and future works are given in Chapter 5. 



 

 6

2. BACKGROUND 

2.1 Machine learning 

In recent years, machine learning (ML) is an emerging field and has been widely 

applied in various areas globlely. It draws on theory from many areas including 

statistics, mathematics and information science etc. ML is a study of making computers 

to have learning ability. The learning problem can be described as exploring a rule that 

utilizes data which are given only from a sample of limited size and limited known 

experiments [29]. Scientists mistakenly analyzed the process that are trying to build a 

variety of features in its relevance, it makes difficult to resolve certain problems. 

However, ML is often successfully solving those problems. Any approach of ML 

consists of two steps, the selection of a candidate model with the using of the learning 

algorithms and the estimation model parameter of the available data. In general model, 

the choosing of combination with parameter estimation are both operated at same time 

in the iteration. In many cases, the choosing of model is either by intuition or experience 

and sometimes are both. In other words, the user is based on the learning algorithm to 

choose model that is utilizing the model parameter of estimation. 

ML algorithms can be divided into three categories [29]: 1) Supervised learning: this 

model is used from existing samples (i.e. training data), by utilizing them to find a 

deterministic function (model) that maps out the input to the desired output with future 

input-output minimum disagreement. Training data consist of the input component to 

the output component. The general output model is a continuous value (i.e. regression 

analysis) or classification tag (i.e. classification problem). 2) Unsupervised learning: 
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data clustering is a typical unsupervised learning approach. Given a set of untagged data, 

these data are assigned to differentiate subsets (i.e. clusters) by using clustering 

algorithms. Thus each subset has common (or similar) attribute. 3) Reinforcement 

learning: this model is to learn what to do, i.e. for finding a target strategy in order to 

define "good" and "bad" from each situation. Through the observation and learning to 

reward good case and punish bad case, after the continuous feedback, the model is 

established. In this article, we discussed details for the used of supervised learning in 

the next section. 

 

2.1.1 Classification problem 

According to the process of supervised learning, we generalized a rule for learning 
process as Figure 1.  

Data collection Data pre-processing Training set

Algorithm selectionTesting setClassifier

Testing Training

Parameter adjust

Stopping criterion

No

Yes

 

Figure 1 Process of supervised learning 
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2.1.1.1 Data preparation and data pre-processing 

Data preparation includes analysis of original data and producing of higher quality 

data. The main compositions consist of data collection, data integration, data 

transformation, data cleaning, data reduction and data discretization. In the process of 

collecting data, it was necessary to provide what attributes, what characteristics or what 

function are important. Otherwise the use of the simple approach "brute-force", means 

to measure the whole related information and attribute weight of all data. However, the 

data information was obtained by brute-force approach is unsuitable to induce directly. 

Because these data include noise or missing data, thus it requires a lot of pre-processes. 

Depending on the difference of circumstances, the researchers had several methods to 

deal with these missing data or noise data, the general common approaches include: 1) 

ignoring the missing data; 2) replacing the missing data by experts; 3) replacing by 

mean or mode; 4) replacing by random [30, 31]. 

 

2.1.1.2 Algorithm selection 

It is a decisive step to choose the specific learning algorithm. When the classifier is 

trained, the result shows us the satisfactory. Then the classifier is available for routine 

usage. Accuracy was used to estimate the classifier that means probability of correct 

classifying testing samples. There are several common technologies are applied for 

classifier validation, called cross validation. The details of validation technology are 

described as following section. Ideally, we would like the accuracy of classifier to be 

independent for the particular partitioning training data from the randomization process, 

because it makes much easier to replicate the experimental results to be published. 
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However, each experiment always has certain sensitivity in partitioning. Usually, ten 

repetitions are tested at several times from the same data with different random 

partitioning and then observing the outcome [32]. 

Several learning algorithms are classified into neural-based learner, rule-based learner 

and statistical learner as the following [33]: 

 

Neural-based learner 

The concept of artificial neural network (ANN) was proposed by Nilsson at mid-1960s. 

It is an artificial intelligence for pattern recognition based on neural like threshold units. 

ANN composed the simple elements based on mathematical model or computational 

model that tries to simulate and inspire by biological nervous systems. ANN needs the 

training network model to perform a particular function by adjusting the parameters or 

weights. And when it passes the input system through the network model to compute, it 

can predict and output into the output system [33, 34]. 

 

Rule-based learner 

The theories of rule-based learning are usually consist of sets of discrete non-statistical 

rules. There are many available approaches which are rule-based learning methods for 

machine learning. One of the approaches is the decision tree that is divide-and-conquer 

approach or a top-down induction method. The goal of decision tree creates a model 

that is utilizing several input variables for prediction (i.e. classification). Each node of 

tree represents to one of the input variables and each leaf is a value of the target from 

the input variables. The node to the leaf called edge represents each possible problem of 
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input variable [33, 35]. Figure 2 is an example of a typical problem of decision tree for 

classification. In order to classify a number of questions that have to be answered. This 

tree would classify by the weather to determine if one is going to play tennis or not, 

according to the Outlook, Humidity and Windy.  

 

Windy?

Yes NoYes No

Humidity?

high normal

Outlook?

strong weak

Yes

sunnyovercast rainy

 
Figure 2 An example of decision tree for classification 

 

Statistical learner 

Statistical learning plays an important role in many areas of science. The main goal is 

to provide a framework for making predictions, decisions or classifications. This 

statistical framework is constructed from a set of data (i.e. training data) that is an 

assumption of process about the statistical nature. Recently, the statistical learning 

theory has received more attention from the pattern recognition especially when the 

support vector machine (SVM) was developed by Vapnik in the mid-1990s. The basic 

principle of K nearest neighbor (KNN) is that each unseen sample (e.g. testing data) was 
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compared with the existing sample (e.g. training data) using Euclidean distance to 

calculate the distance metric (e.g. training model). The closest existing sample was 

assigned in different classes for the unseen sample. Naive Bayes (NB) is a simple 

classifier that calculates the maximum posterior probability based on Bayes theorem. 

The naive Bayes probability model was built from the independent feature. This model 

combines the maximum of a posteriori decision rule that selects a most probable 

hypothesis of common rule [33, 36]. 

 

2.1.1.3 Cross validation 

In data mining like classification problem, a typical task is to construct a model from 

available data, such a model may be a classifier. We cannot be sure of that if a model 

can predict the future unseen data well, so the model needs to demonstrate the 

prediction capability. In statistics, a cross validation is an approach to estimate the 

generalization performance of prediction. Two or more learning algorithms can be 

compared through cross validation that can use in a statistical hypothesis test to know if 

one approach is superior than the another. There are three common cross validation 

methods including holdout validation, m-fold cross validation and leave-one-out cross 

validation, they are shown as follow [37, 38]: 

 

Holdout cross validation 

A simplest kind of cross validation method is called holdout cross validation is to 

separate the available data into the two non-overlapped sets (i.e. training set and testing 

set). It is common to split 2/3 of the data as the training sets and remaining 1/3 of data 
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as the test sets. The model maybe a classifier fits in a function for using the training sets. 

And then the testing sets are used to predict the output for the using of data in the model 

[37]. The procedure of holdout cross validation is shown in Figure 3. 

 

Part 2

Part 1

Training

Model

Testing

Available data Result
 

Figure 3 Illustration of procedure of holdout cross validation 

 

m-fold cross validation 

An improved cross validation approach from holdout validation method is called 

m-fold cross validation. In m-fold cross validation, the available data are separated into 

m non-overlapped and equally sized sets. A variant of these separated sets are randomly 

dividing the data into the training and testing sets as m in different times. The holdout 

method is repeated for m times. One of the m subsets is used as the testing sets and the 

remaining m-1 subsets as the training sets. Then the average accuracy across all m trials 
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are calculated [37]. The procedure of m-fold cross validation is shown in Figure 4, here 

m = 3. 

 

Part 3

Training

Model

Testing

Available data Result

Part 2

Part 1

Part 3

Training

Model

Testing

Available data Result

Part 2

Part 1

Part 3

Training

Model

Testing

Available data Result

Part 2

Part 1

 

Figure 4 Illustration of procedure of 3-fold cross validation 

 

Leave-one-out cross validation 

A special case for m-fold cross validation, where m equals to the number of available 

data is called leave-one-out cross validation. The available data are separated and 

similar to m-fold cross validation. According to the previous calculation, the average 

accuracy across all m trials are calculated to estimate the model [37]. The procedure for 

leave-one-out cross validation is shown in Figure 5. 
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Training

Model

Testing

Available data Result

.

.

.

.

.

.

.

.

.

.

.

Sample 1
Sample 2

Sample N

Training

Model

Testing

Available data Result

.

.

.

.

.

.

.

.

.

.

.

Sample 1
Sample 2

Sample N

Training

Model

Testing

Available data Result

.

.

.

.

.

.

.

.

.

.

.

Sample 1

Sample N

…

Sample 2

 

Figure 5 Illustration of procedure of leave-one-out cross validation 

 

2.1.2 Feature selection 

Feature selection is an important process of technology for high dimension data 

analysis. In other word, it selects a subset of d attributes from a set of D attributes based 

on some criterion, where d < D. Feature selection has been successfully applied in many 

areas of applications for its data sets from tens to hundred thousands of variables 

available. There are five main objectives of feature selections in pattern classification 

including: (a) finding the minimal size of feature subset that is successful, necessary and 

sufficient for the target concept, (b) improving the prediction accuracy performance for 

the models (maybe classifiers), (c) providing faster and more cost-effective models 

(maybe classifiers), (d) providing a better understanding of the underlying process that 

generates the data, (e) avoiding overfitting and improving model performance [11, 12, 

39, 40]. Feature selection techniques are organized into three common models: the filter 

methods, wrapper methods and embedded methods. The three common taxonomy of 

feature selection techniques for each process of feature selection type are shown in 

Figure 6. The three common taxonomy of feature selection techniques for each concept 
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of feature selection type are shown in Table 1. The details of three common taxonomy 

feature selection techniques are shown as following: 

 

Filtering and Ranking

Selected features

Classification

Selected features

Classification

Classification

Optimization

Selected features

Classification

Optimization

Filter method Wrapper method Embedded method  

Figure 6 The process of three common model of feature selection 

The source of this figure is modified from [7]. 
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Table 1 The three common model of feature selection of overview 
Model search Advantages Disadvantages Examples 

Univariate   
Fast 
Scalable 
Independent of the classifier 

Ignores feature dependencies 
Ignores interaction with the 

classifier 

Euclidean distance 
i-test 
Information gain, Gain ratio 
 

Multivariate   

Filter 
 

Models feature dependencies 
Independent of the classifier 
Better computational complexity 

than wrapper methods 

Slower than univariate techniques
Less scalable than univariate 
techniques 
Ignores interaction with the 
classifier 

Correlation-based feature 
selection 

Markov blanket filter 
Fast correlation-based feature 

selection 
 

Deterministic   
Simple 
Interacts with the classifier 
Models feature dependencies 
Less computationally intensive 

than randomized methods 

Risk of over fitting 
More prone than randomized 
algorithms to getting stuck in a 
local optimum (greedy search) 
Classifier dependent selection 

Sequential forward selection 
Sequential backward 

elimination 
Plus q take-away r 
Beam search 
 

Randomized   

Wrapper 

Less prone to local optima  
Interacts with the classifier 
Models feature dependencies 

Computationally intensive 
Classifier dependent selection 
Higher risk of overfitting than 
deterministic algorithms 

Simulated annealing 
Randomized hill climbing 
Estimation of distribution 

algorithms 
Genetic algorithms 
Tabu search 
Particle swarm optimization 
 

Embedded Interacts with the classifier 
Better computational complexity 

than wrapper methods 
Models feature dependencies 

Classifier dependent selection Decision trees 
C4.5 
Weighted naive Bayes 
Feature selection using the 
weight vector of SVM 

The source of this table is modified from literature [40]. 
The references of examples are also seeing [40]. 

 

2.1.2.1 Filter method 

Filter techniques do not optimize the classification accuracy of the classifier directly. 

It assesses the relevance of attributes by looking only at the intrinsic characteristics of 

the data. In most cases, each feature relevance scores so-called "merits" are computed. 

The low-scoring features are removed or providing a generic selection of variables (i.e. 
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score ranking). After the feature is removed, this subset of attribute is presented as the 

input for the classifier. Several justifications for the filters of the feature selection have 

been forwarded in some special issues [11]. The advantages of filter, easily scale for 

very high-dimensional datasets. The algorithms are often simply fast caculated in 

computation. The filter is independent for the classifier. In contrary, the disadvantages 

of filter ignore the interaction with the classifier. Most proposed techniques are 

univalent. [40]. This disadvantage means that each feature is considered or calculated 

independently, therefore it cases the ignorance of feature dependencies which results in 

a worse classification accuracy when feature selections are compared. Hence, there are 

some multivariate filter techniques to overcome the incorporation of feature 

dependencies. Finally, some filters show the argument for providing a generic selection 

of variables that is not depending on learning machine. Another compelling justification 

is that the filter is used as a preprocessing step to eliminate attributes as well as 

overcoming the overfitting [11, 12, 40]. 

 

2.1.2.2 Wrapper method 

Wrapper techniques evaluate the selected attribute subset according to their power to 

improve sample classification accuracy of the classifier. It requires a search space, 

operators, a search engine, and an evaluation function [12]. Wrapper techniques embed 

the model hypothesis within the search of feature subset, this good feature subset 

depends on the model selection found by the search engine. The classical approaches of 

the search engine include the forward selection and backward elimination. Recently, the 

evolutionary based of algorithms such as Genetic algorithm (GA) has been proposed as 
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more advanced wrapper algorithm [7]. These search engines are divided in two 

categories: the deterministic and randomized (like GA) search algorithms [40]. For the 

evaluation function, it may be used to cross validation as the accuracy estimation 

criterion to evaluate a specific subset of features. The advantages of wrapper are the 

algorithms ability that the feature dependencies interaction between feature subset and 

classifier are taking into account. The algorithms usually obtain a higher classification 

accuracy. The common drawbacks of wrapper techniques are the algorithms which may 

cause a higher risk of overfitting than the filter. The algorithms are computationally 

intensive, which may give poor generalization property on the unseen data classification 

[7, 11, 40]. 

 

2.1.2.3 Embedded method 

The embedded techniques use the inductive algorithm, however, the inductive 

algorithm itself represents the feature selector and the classifier. The embedded 

techniques search for an optimal subset of features that is built into the classifier 

construction and combined with space of feature subsets and hypotheses. Examples of 

these classification trees are ID3, C4.5 and random forest. The advantage of embedded 

is that the algorithms include the interaction with the classifier as wrapper method. The 

drawback of embedded is the algorithms that are generally based on greedy, using only 

the top ranking attributes to perform the sample of classification [7, 40]. 

 

2.1.3 Overfitting problem 

Overfitting reveals when computational intensive search of algorithms are used. The 
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estimation may be overfitted and yield biased of predictions under these circumstances 

[41]. If the training data lies too close together, the classifier predictions are shown in 

poor condition. This occurs when there is insufficient data to train the classifier and the 

data does not fully cover up the concept that is learnt by the machine. This problem is 

very common in many real world samples where the available data may rather be noisy 

[42]. In order to avoid overfitting, some additional techniques are being discussed, such 

as cross-validation, regularization, and early termination or resampling [43, 44]. 

However, the best way to avoid overfitting is to use an abundant amount of training data. 

In this thesis, the microarray data have a high dimension and small sample size, which 

is subsequently reduced by a filter feature selection. After feature reduction, the 

LOOCV technique enhances the training data for classification in a wrapper-based 

feature selection. 
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3. METHODS 

3.1 Correlation-based feature selection 

Correlation-based feature selection (CFS) is a filter feature selection method using a 

heuristic for evaluating the merit of a subset of feature. The heuristic takes the 

individual features useful for labeling the class and their inter-correlation into account. 

The hypothesis of CFS is based on the statement Good feature subsets contain features 

highly correlated with (i.e., predictive of) the class, yet uncorrelated with (i.e. not 

predictive of) each other [17]. 

This hypothesis is incorporated into the correlation-based heuristic evaluation 

equation as: 

ff

cf
S

kkk

k
Merit

γ

γ

)1( −+
=  (1)

where MeritS is the heuristic merit of a feature subset S containing k features, cfγ  is 

the average feature and class correlation, and ffγ  is the average feature-feature 

intercorrelation (f∈S). Equation (1) is Pearson’s correlation, where all variables have 

been standardized. General filter methods estimate the significance of a feature 

individually. CFS is then used to determine the best combination of attribute subsets via 

score values from the original data sets. The attributes are combined since they would 

be poor predictors of the class individually. Redundant attributes are discriminated 

against because they would be highly correlated with one or more of the other attributes 

[17]. 



 

 21

  Various heuristic search strategies, such as the best first method [45], are often 

applied to search the feature subset space in a reasonable time frame. We applied the 

best-first-method to calculate a matrix of feature-class and feature-feature correlation 

merits for CFS from the training data. The best-first-search starts with an empty set of 

features and generates all possible single feature expansions. Given enough time, a 

best-first-search will explore the entire feature subset space, so CFS uses a stopping 

criterion when subsets are found [17]. In order to calculate the merit of a feature set, the 

correlation between features is computed using symmetrical uncertainty (SU):  

⎥
⎦

⎤
⎢
⎣

⎡
+

−+
×=

)()(
),()()(

0.2
XHYH

YXHXHYH
SU  (2)

where H(Y) and H(X, Y) are defined as: 

∑
∈

−=
Yy

ypypYH ))((log)()( 2  (3)

where a probabilistic model of a feature Y can be formed by estimating the individual 

probabilities of the values y∈Y from the training data. If feature Y in the training data is 

partitioned according to another feature X, then the relationship between features Y and 

X is given by: 

∑∑
∈∈

−=
YyXx

xypxypxpXYH ))|((log)|()()|( 2  (4)

SU compensates for the information gain’s bias toward some attributes; the SU value is 

in the range [0, 1]. 

 

3.2 Binary particle swarm optimization 

Particle swarm optimization (PSO) [46] is a population based optimization tool, 
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which was originally introduced as an optimization technique for real-number spaces. In 

PSO, each particle is analogous to an individual “fish” in a school of fish. A swarm 

consists of N particles moving around a D-dimensional search space. The process of 

PSO is initialized with a population of random particles and the algorithm then searches 

for optimal solutions by continuously updating generations. Each particle makes use of 

its own memory and knowledge gained by the swarm as a whole to find the best 

solution. The position of the ith particle can be represented by xi = (xi1, xi2, …, xiD). The 

velocity for the ith particle can be written as vi = (vi1, vi2, …, viD). The positions and 

velocities of the particles are confined within [Xmin, Xmax]D and [Vmin, Vmax]D, 

respectively. The best previously visited position of the ith particle is denoted its 

individual best position pi = (pi1, pi2, …, piD), a value called pbesti. The best value of the 

all individual pbesti values is denoted the global best position g = (g1, g2, …, gD) and 

called gbest. At each generation, the position and velocity of the ith particle are updated 

by pbesti and gbest in the swarm. However, many optimization problems occur in a 

space featuring discrete, qualitative distinctions between variables and between levels of 

variables. For this reason, Kennedy and Eberhart [47] introduced binary PSO (BPSO), 

which can be applied to discrete binary variables. In a binary space, a particle may 

move to near corners of a hypercube by flipping various numbers of bits; thus, the 

overall particle velocity may be described by the number of bits changed per iteration. 

In BPSO, each particle is updated based on the following equations: 

( ) ( )old
idd

old
idid

old
id

new
id xgbestrcxpbestrcvwv −××+−××+×= 2211  (5)

If ),( maxVVv mni
new
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new
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id e

vS
+

=
1

1)(  (7)

if )(3
new
idvSr <  then 1=new

idx  else 0=new
idx  (8)

In these equations, w is the inertia weight that controls the impact of the previous 

velocity of a particle on its current one, r1, r2 and r3 are random numbers between [0, 1], 

and c1 and c2 are acceleration constants that control how far a particle will move in a 

single generation. Velocities new
idv  and old

idv  denote the velocities of the new and old 

particle, respectively. old
idx  is the current particle position, and new

idx  is the new, 

updated particle position. In formula (6), particle velocities of each dimension are tried 

to a maximum velocity Vmax. If the sum of accelerations causes the velocity of that 

dimension to exceed Vmax, then the velocity of that dimension is limited to Vmax. Vmax 

and Vmin are user-specified parameters (in our case Vmax = 6, Vmin = -6). The position of 

particles after updating is calculated by the function )( new
idvS  (formula (7)). If )( new

idvS  

is larger than r3, then its position value is represented by {1} (meaning this position is 

selected for the next update). If )( new
idvS  is smaller than r3, then its position value is 

represented by {0} (meaning this position is not selected for the next update). The 

Pseudo code of BPSO as following: 
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Begin 
 Initialize particle swarm by randomly 
 While(stopping criterion is not met) 
 Evaluate fitness of particle swarm 
   Update pBest and gBest 
   Update X and V of particle swarm 
 Next generation until stopping criterion 
End 

 

3.3 Taguchi method 

The Taguchi method was developed by Genichi Taguchi. It is a statistical method 

with a robust design. In a robust experimental design [48-50], processes or products can 

be analyzed and improved by altering relevant design factors. The commonly-used 

Taguchi method [48-50] provides two mechanisms, an orthogonal array (OA) and a 

signal-to-noise ratio (SNR), for analysis and improvement. If a particular target (i.e., 

process or product) has d different design factors, 2d possible experimental trials will 

have to be considered in a full factorial experimental design. OAs are principally 

utilized to decrease experimental efforts associated with the d design parameters. An 

OA can be considered a fractional factorial experimental design matrix that provides a 

comprehensive analysis of interactions among all design factors, and fair, balanced and 

systematic comparisons of the different levels (or options) of each design factor. In the 

two-dimensional array, each column indicates a specific design parameter and each row 

represents an experimental trial with a particular combination of different levels for all 

design factors. The proposed scheme uses a common two-level OA for selecting 

representative features from the original feature set. A two-level OA can be defined as 
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Lh (2d), where d is the number of columns (i.e., the number of design parameters) in the 

orthogonal matrix, and h = 2k (h > d, k > log2 (d) and k is an integer) denotes the 

number of experimental trials; base 2 denotes the number of levels for each design 

parameter.  

The SNR in the Taguchi method is used to determine the robustness of the levels of 

each design parameter. A “high quality” result for a particular target can be achieved by 

specifying design parameters at a specific level with a high SNR. The SNR is then 

utilized to analyze and optimize design parameters for a particular target. In Taguchi 

method classifies robust parameter design problems into different categories depending 

on the target of the problem. Typically, the smaller-the-better and larger-the-better SNR 

types are utilized [50]. Consider a set of t observations {y1, y2, …, yt}: 

For the smaller-the-better characteristic, the SNR is determined as 

)1log(10
1

2∑
=

−=
n

t
ty

n
SNR  (9)

For the larger-the-better characteristic, the SNR is determined as 

)11log(10
1

2∑
=

−=
n

t tyn
SNR  (10)

For instance, for a particular target that has 15 design parameters with two levels (i.e., 

levels 0 and 1), a two-level OA L16 (215) can be generated (as shown in Table 2). In this 

two-level OA, only 16 experimental trials are required for evaluation, analysis and 

improvement. Conversely, all possible combinations of 15 design factors (i.e., 

215=32768) should be considered in the full factorial experimental design, which is 

frequently inapplicable in practice. Once an OA is generated, an observation or 

objective function of each experimental trial can be determined. 
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Table 2 L16 (215) Orthogonal array 

Design Factors 
A B C D E F G H I J K L M N O

Column Number 

Number of 
experimental 

trial 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
3 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
4 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 
5 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 
6 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 
7 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 
8 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 
9 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
10 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 
11 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 
12 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 
13 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 
14 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 
15 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
16 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

 

Suppose an illustrative example with two sets of observations, A = {78, 89, 86, 99, 85, 

90} and B = {85, 90, 99, 98, 82, 92} is given. For the smaller-the-better characteristic, 

the SNR of sets A and B are, 
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dB19.39−=  

Similarly, for the larger-the-better characteristic, the SNR of sets A and B are, 
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The SNR is utilized in the Taguchi methods to determine the robustness of all levels 

of each design parameter. That is, “high quality” of a particular target can be achieved 

by specifying each design parameter with a specific level having a high SNR. For both 

the smaller-the-better and larger-the-better characteristics, the SNR of A is better than 

that of B. 

 

3.4 K nearest neighbor 

The K nearest neighbor (KNN) method is one of the most popular nonparametric 

methods [51, 52] used for classification of new objects based on attributes and training 

samples. KNN consists of a supervised learning algorithm which instantly classifies the 

results of a query instance based on the majority of the KNN category. Classifiers do 
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not use any model for KNN and are determined solely based on the minimum distance 

from the query instance to the training samples. Any tied results are solved by a random 

procedure. 

Given training data {(x1, y1), (x2, y2), …, (xi, yi), ..., (xn, yn)} and test data x, where x 

is the feature vector of the data, yi is the class of data xi, and n is number of data, the 

distance measure can be defined as ∑
=

−=
d

j
ijji xxxxd

1

2)(),( , where d is the 

dimension of the feature vector. The nearest neighbor rule is nnr(x) = yk，where k = arg 

mini d(x, xi). A voting strategy is used if K>1. For example if K=3, three minimal 

distance measures are calculated; if two points fall into class A and one point falls into 

class B, class A is chosen. 

 

Begin 
For i = 1 to number of test set 

For j = 1 to number of train set 
Calculating distance of test with train set 

Next j 
Next i 
For k = 1 to number of parameter K 

Determine class of test set by vote strategy 
Next k 
Determine the classification accuracy 

End 
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3.5 Hybrid Taguchi-Binary Particle Swarm Optimization 

3.5.1 TBPSO without parameter optimization 

This section introduces a correlation-based feature selection method to implement a 

gene selection preprocess, and then combines it with a Taguchi-binary particle swam 

optimization. The K-NN with the LOOCV method serves as a classifier to calculate the 

classification accuracy. The flowchart of CFS-TBPSO is shown in Figure 7 and a 

detailed description of the individual steps is given below. 

Step 1) A feature subset is generated by CFS using Weka [38]. 

Step 2) Initialize population of particles with random position X (X ∈ {x1, x2, ..., xN }) 

and velocities V (V ∈ {v1, v2, ..., vN}) where N is the number of particles; 

each position of a particle is a candidate for feature subsets CS. 

Step 3) Calculate the fitness for each particle and determine the average 

classification accuracy for training set T (denoted ACC(T, Sj) where Sj is the 

feature subset) using the K-NN classification rule with the LOOCV 

technique. 

Step 4) Update the individual best solution pBest, and global best solution gBest 

according to the fitness evaluation results (i.e., accuracy). The number of 
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selected features is also considered. 

Step 5) If gBest stays unchanged for m times go to next step. Otherwise go to Step 7. 

Step 6.1) Two particles, denoted b1 and b2, are randomly selected from the population. 

Consider that b1 and b2 have w different bits ( nw ≤ ). Then the Taguchi 

method is employed on these two particles. 

Step 6.2) Generate an “extended” two-level OA with respect to the above particular w 

bits (i.e., features or factors) of b1 and b2. The level of feature i in the OA 

will be replaced by the corresponding bit of b1 if the original level is 0. 

Conversely, the level of feature i in the OA will be replaced by the 

corresponding bit of b2 if the original level is 1. Notably, the levels of the 

remaining (n – w) bits in the two-level OA are the same as the corresponding 

bits of b1 and b2. In each experimental trial j, levels 1 or 0 in each column i 

of the extended two-level OA indicate whether feature i is selected or not 

selected in the corresponding feature set Sj for pattern classification. 

Step 6.3) ACC(T, Sj) is considered an observation or objective function of the 

experimental trial j in the extended two-level OA. ACC(T, Sj) is the same as 

in Step 3. This process, called function value, is used to measure the quality 
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of each feature set or solution Sj. 

Step 6.4) Calculate the corresponding SNR for each level (i.e., levels 1 and 0) of the 

particular w bits according to observations from all experimental trials in the 

extended two-level OA. 

Step 6.5) Generate a better solution t_best based on the results in the extended 

two-level OA. For all w bits in t_best, each bit is determined by value 1 if its 

corresponding SNR for level 1 is greater than that for level 0, and vice versa. 

Notably, the remaining (n - w) bits of t_best are the same as those of b1 and 

b2. 

Step 6.6) Repeat Step 6.1-6.5 until each particle has finished the local search process. 

Step 6.7) Update gBest and pBest the same was as in Step 4. 

Step 7) Update the velocity and position of each particle according to formulas (5) to 

formula (8). 

Step 8) Repeat Steps 3-7 until a certain number of iterations have been completed.  

Consequently, the best feature subset is obtained. 
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Figure 7 Flowchart of CFS-TBPSO on microarray data 
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3.5.2 TBPSO with parameter optimization 

This section introduces an optimizer algorithm to implement a SNP selection and the 

classifier parameter optimization proeprocess. The holdout cross validation be used in 

outer loop that separates two parts: training set and testing set. By running BPSO 

processing on as many training sets. m-fold cross validation be used in the inner loop to 

guide the search of the feature selection and parameter optimization process on the 

training data. The flowchart of BPSO is shown in Figure 8 and how the steps executed 

is described at detailed below. 
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Figure 8 Flowchart of TBPSO-KNN on SNPs data 
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3.5.3 Particle encoding design 

To implement our proposed approach, this research used KNN classifier because the 

parameter K depends on the specific data. The parameter K and features used as input 

attributes must be optimized. Hence, the particle encoding desing comprises two parts, 

K and the features mask. In order to sutable feature selection problem, the binary coding 

system was used to represent the particle. Figure 9 shows the binary particle 

representation of our design. The kn
k

i
k XXX ......1

k  represents the value of parameter K, 

fn
f

i
ff XXX ......1 represents the feature mask. nk is the number of bits representing 

parameter K. nf is the number of bits representing the features. Here, the nk are set to 5, 

in order to the parameter K be an odd positive integer. Through conversion the K∈{1, 

3, …, 43}, for example the when kn
k

i
k XXX ......1

k = 00000 then K = 1, when 

kn
k

i
k XXX ......1

k = 00001 then K = 3; kn
k

i
k XXX ......1

k  = 11111, K = 63. nf equals the 

number of features varying from the datasets. For particle representing the feature mask, 

the bit with value '1' represents the feature is selected, and '0' indicates feature is not 

selected. 

 

kn
k

i
kk XXX ......1 fn

f
i
ff XXX ......1

Figure 9 The diagram of particle coding design 
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3.5.4 Fitness function 

A position of particle as a solution, which is comprise a feature subset and parameter 

K. Classification accuracy and the number of selected features are the two criteria used 

to design a fitness. The accuracy was obtained by KNN classifier with m-Fold cross 

validation to estimate the individual feature subset and parameter K. The fitness 

function was shown as follows: 

fitness(xid) =Accuracy KNN with m-Fold cross validation (11)

 

3.5.5 Scheme and process 

Step 1) In data processing, the SNP data of osteoporosis were normalized to [-1, 1] and 

separate into training set and testing set using holdout cross validation. 

Step 2) Initialize population of particles with random position X (X ∈ {x1, x2, ..., xN }) 

and velocities V (V ∈ {v1, v2, ..., vN}) where N is the number of particles; each 

position of a particle is a candidate for feature subsets CS. 

Step 3) Calculate the fitness for each particle and determine the average classification 

accuracy for training set T (denoted ACC(T, Sj) where Sj is the feature subset) 

using the K-NN classification rule with the m-fold cross validation technique. 
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Step 4) Update the individual best solution pBest, and global best solution gBest 

according to the fitness evaluation results (i.e. accuracy). Here we also 

consider the number of selected features. 

Step 5) Update the velocity and position of each particle according to formula (5) to 

formula (8). 

Step 6) Taguchi method is used be local search as chapter 4. 

Step 7) Repeat Steps 3-6 until a certain number of iterations have been completed.  

Consequently, the best feature subset is obtained. 

Step 8) To predict using the testing data set with the best feature subset and K into 

K-NN classifer. 

 

3.5.6 Illustrative example 

This section provides an example that illustrates the details, in particular the steps 

regarding the Taguchi method (Steps 6.1-6.6 of section 3.1.5) of the proposed 

CFS-TBPSO feature selection method. In the Breast-Cancer pattern classification 

problem [53] with 683 instances, each instance xe has a set of 10 attributes, denoted {A, 

B, C, D, E, F, G, H, I, J}. Each specific feature subset is encoded as a string of ten 
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binary digits (or bits). Each feature can be described by a binary digit with the value 1 

or 0, which indicates whether the feature is selected or not selected in the corresponding 

feature subset. 

Two candidate feature subsets, b1 and b2 (0000000111 and 0001111000, respectively) 

are randomly selected from the population in Step 6.1 (as shown in Table 3). These two 

candidate feature subsets are comprised of seven different bits, i.e. features D, E, F, G, 

H, I and J. Accordingly, an “extended” two-level OA with respect to the above seven 

bits of b1 and b2 is generated (Table 4). The levels of the remaining three features in the 

“extended” two-level OA are the same in b1 and b2. 

 

Table 3 Position of particles 

Factors A B C D E F G 

Level 1(particle x1) 0 0 0 0 1 1 1 

Level 2(particle x2) 1 1 1 1 0 0 0 
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Table 4 Two-level orthogonal array 

Design Factors (Features) 
A B C D E F G 

Column Number 

Number of 
experimental 

trial 
1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

 

In Step 6.2, the level of feature i in the OA will be replaced by the corresponding bit 

of b1 if the original level is 0. Conversely, the level of feature i in the OA will be 

replaced by the corresponding bit of b2 if the original level is 1. Consequently, a new, 

extended two-level OA (as shown in Table 5) with respect to the above seven bits of b1 

and b2 is obtained. The levels of the remaining three features in the two-level OA are the 

same as the corresponding bits of b1 and b2. 

In each experimental trial j in the new, extended two-level OA, levels 1 or 0 in each 

column i indicate whether feature i is selected or not selected in the corresponding 

feature set Sj. For each feature set Sj, ACC(T, Sj) can be determined using the K-NN 

classification rule with the LOOCV technique. ACC(T, Sj) is considered an observation 
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or objective function of experimental trial j in the new, extended two-level OA. For 

example, the average classification accuracy of feature subset {H, I, J} (i.e., 

experimental trial 1 in Table 5) is 92.24%. This process, the fitness evaluation, is used 

to measure the quality of each feature set or solution Sj. The experimental layout and 

signal-to-noise data of the Breast-Cancer pattern classification problem is summarized 

in Table 5. The larger-the-better characteristic (formula (10)) is selected for calculating 

the SNR as maximum classification accuracy is preferred in pattern classification. Next, 

as shown in Table 5, the corresponding SNR for each level of the particular seven 

features can be calculated according to observations from all experimental trials in the 

new, extended two-level OA. As a result, a better solution t_best, encoded 0001111111, 

can be obtained based on the results in Table 5. For all the seven bits in t_best, each bit 

is determined by value 1 if its corresponding SNR for level 1 is greater than that for 

level 0, and vice versa. The average classification accuracy of the better solution t_best 

is 95.31%, a value that is significantly better than that of the feature subset in each 

experimental trial in the new, extended two-level OA.  
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Table 5 Generation of better position from two particles using Taguchi method 

Factors  
   A B C D E F G 

Column number Experiment 
number 1 2 3 4 5 6 7 8 9 10 

Function 
Value 

1 0 0 0 0 0 0 0 1 1 1 92.24 
2 0 0 0 0 0 0 1 0 0 0 89.75 
3 0 0 0 0 1 1 0 1 0 0 91.51 
4 0 0 0 0 1 1 1 0 1 1 94.14 
5 0 0 0 1 0 1 0 0 1 0 92.97 
6 0 0 0 1 0 1 1 1 0 1 94.86 
7 0 0 0 1 1 0 0 0 0 1 92.09 
8 0 0 0 1 1 0 1 1 1 0 95.17 

EF1    39.26  39.31 39.30 39.29 39.41 39.43 39.40   
EF2    39.44  39.39 39.40 39.41 39.29 39.28 39.30   

Optimal 
level    x2 x2 x2 x2 x1 x1 x1  

Optimal 
 position 0 0 0 1 1 1 1 1 1 1 95.31 
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4. RESULTS AND DISCUSSION 

4.1 The data set 

 

4.1.1 Microarray data 

The experiment data sets of this study were downloaded from 

http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html [5]. They consist of 

Leukemia, Breast 2 class, Breast 3 class, NCI 60, Adenocarcinoma, Brain, Colon, 

Lymphoma, Prostate, and Srbct. The data set format was arranged as shown in Table 6, 

which includes the number of patients, genes, and classes. Generally, feature value 

scaling can enhance pattern recognition accuracy, hence the data sets were normalized 

to [0, 1]. The normalization is given by formula (12), where f'value is the scaled value of 

a feature, fvalue is the original value of a feature, valueMAX is the upper bound of the 

feature value, and valueMIN is the lower bound of the feature value. 

MINMAX

MINvalue
value valuevalue

valueff
−

−
='  (12)
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Table 6 Format of ten microarray classification data sets 

Method 
Data sets 

Genes Patients Classes Original reference 

Leukemia 3051 38 2 [54] 

Breast 2 class 4869 78 2 [55] 

Breast 3 class 4869 96 3 [55] 

NCI 60 5244 61 8 [56] 

Adenocarcinoma 9868 76 2 [57] 

Brain 5597 42 5 [58] 

Colon 2000 62 2 [59] 

Lymphoma 4026 62 3 [60] 

Prostate 6033 102 2 [61] 

Srbct 2308 63 4 [62] 

(1) Genes: number of genes for gene microarray data. (2) Patients: number of patients 

for gene microarray data. (3) Classes: number of classes for gene microarray data. (4) 

Original ref.: reference for gene microarray data. 

 

4.1.2 SNP data 

Osteoporosis data was approved by the Institutional Review Board of Kaohsiung 

Medical University, Kaohsiung, Taiwan. All subjects signed the informed consent. No 

individual was receiving or had previously received hormone replacement therapy. 

Women with surgical menopause were excluded. Clinical data, including body mass 

index, smoking history, and blood pressure, were collected. This teaching hospital had 

1,500 beds and is located in Southern Taiwan. The characteristics of study subjects were 

randomly recruited from general health inspection in the Center of Health Examination, 
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Department of Preventive Medicine, Kaohsiung Medical University [73]. Fifty 

premenopausal (mean age 43 years) and 254 postmenopausal women (mean age 59 

years) were involved in this study (Postmenopausal women is defined as more than 6 

months without the menstruation occur or more than 59 years old). The attributes are 

age, menopausal and eleven SNPs (TNFα-857, TGFβ1-509, Osteocalcin, TNFα-308, 

BstBⅠ, DraⅡ, IL1_ra, HSP70 hom, HSP 70-2, CTR and BMP-4, detail see Table 7) 

respectively, the number of total feature is thirteen. The type of SNP genotype is 

symbol, we convert to numerical such as Table 7 shown {-1, 0, 1}. 

 

Table 7 The data type of SNP of osteoporosis 

Genotype 
SNP Chromosome Gene (location) rs number 

-1 0 1 
1 6 TNFα-857 rs1799724 TT TC CC 
2 19 TGFβ1-509 rs1800469 TT TC CC 
3 1 Osteocalcin rs1800247 CC CT TT 
4 6 TNFα-308 rs1800629 AA AG GG 
5 11 PTH (BstBⅠ) rs6254 GG AG AA 
6 11 PTH (DraⅡ) rs6256 AA AC CC 
7 2 IL1_rac VNTRb A1A1 A1A2 A1A4
8 6 HSP70 hom rs2227956 CC CT TT 
9 6 HSP 70-2 rs1061581 GG AG AA 
10 7 CTR rs1801197 CC CT TT 
11 14 BMP-4 rs17563 CC CT TT 
a Data source [73]; b Variable number tandem repeats; cIL1_ra genotype: A1, 410 

bp; A2, 240bp; and A4, 325 bp. 
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4.2 Parameter setting 

The CFS was implemented under the Weka [38] environment 

(http://www.cs.waikato.ac.nz/ml/weka/). The parameters, inertia weight w and the 

acceleration factors c1 and c2, need to be considered in BPSO. The balance between the 

global exploration and local search ability is controlled by w. A large inertia weight 

facilitates the global search, while a small inertia weight facilitates the local search. c1 

and c2 control the movement of particles. To avoid premature BPSO convergence, the 

adjustment should not be too excessive, since this might result in extreme particle 

movement, which makes impossible to obtain an optimized feature. Hence, suitable 

parameter adjustment is paramount. In this thesis, we adopted c1 and c2 equal to 2 and w 

was set to 0.8. We set [vmin, vmax] = [-6, 6], which yields a range of [0.9975, 0.0025] 

using the sigmoid limiting transformation formula (7). The parameters used have the 

same values as the parameters in Shi and Eberhart [63]. The new standard PSO 

definition said 50 particles were performed best, and this literature suggests the 

population size between 20 – 100 particles [74]. Hence, here we set to 100 for 

microarray data and set to 50 for SNP data. The generation size we set to 30, because in 

high computational classification algorithm and we can obtain superior performance in 

few generation sizes. Finally, all Weka parameter of experiments were set to default. 

Except the population and generation size of GA was the same BPSO that in order to 

compare with BPSO. 
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4.3 Experimental results 

4.3.1 Experiment of microarray data 

Table 8 gives a comparison of classification error rates obtained by methods taken 

from the literature [5] and the BPSO/1NN, CFS/1NN, CFS-BPSO/1NN, and 

CFS-TBPSO/1NN methods. The BPSO, CFS-BPSO and CFS-BPSO algorithms were 

applied to ten microarray data sets and independently executed 10 times for each data 

set. Four methods from the literature, Random Forest (s.e.=0), Random Forest (s.e.=1), 

Shrunken centroids (SC.s) and Nearest neighbor variable selection (NN.vs), were used 

for the comparison. In Table 8, the average classification error rate is 0.162, 0.102, 

0.026, and 0.015 for the BPSO/1NN, CFS/1NN, CFS-BPSO/1NN, and 

CFS-TBPSO/1NN method, respectively. In CFS-TBPSO/1NN, the classification error 

rate is zero in six out of the ten data sets (Leukemia, NCI 60, Adenocarcinoma, Brain, 

Colon, Lymphoma, and Srbct). The classification error rates of the other three data sets, 

Breast 2 class (0.012), Breast 3 class (0.010), and Prostate (0.005), are close to zero. 

Table 9 shows the number of genes selected by the methods. The number of features 

selected by the proposed method is lower than the number of features selected by the 

BPSO/1NN, CFS/1NN, CFS-BPSO/1NN methods. In CFS-TBPSO/1NN, the number of 

genes in the Leukemia and Adenocarcinoma microarray data sets were reduced from 

3051 genes to 3.9 genes and from 9868 genes to 15.9 genes, respectively (Table 9). This 

indicates that the proposed approach not only significantly reduces the classification 

error rate, but also effectively eliminates redundant or unnecessary features. Figure 10 

shows the number of genes selected by the proposed method compared to the other 

methods for the microarray data sets. 
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Table 8 Classification error rate of feature selection methods for the microarray data 

Method 
Dataset 

RF 

(s.e. = 0) 

# Error 

RF 

(s.e. = 1)

# Error 

SC.s 

# Error

NN.vs 

# Error

BPSO 

1NN 

# Error 

CFS 

1NN 

# Error

CFS-BPSO 

1NN 

# Error 

CFS-TBPSO

1NN 

# Error 

Leukemia 0.087 0.075 0.062 0.056 0 0 0 0 
Breast 2 class 0.337 0.332 0.326 0.337 0.338 0.182 0.056 0.026 
Breast 3 class 0.346 0.364 0.401 0.424 0.385 0.368 0.153 0.097 
NCI 60 0.327 0.353 0.246 0.237 0.251 0.098 0.023 0 
Adenocarcinoma 0.185 0.207 0.179 0.181 0.158 0.105 0.014 0.013 
Brain 0.216 0.216 0.159 0.194 0.143 0.048 0 0 
Colon 0.159 0.177 0.122 0.158 0.189 0.129 0.013 0 
Lymphoma 0.047 0.042 0.033 0.04 0.016 0 0 0 
Prostate 0.061 0.064 0.089 0.081 0.100 0.069 0.019 0.014 
Srbct 0.039 0.038 0.025 0.031 0.044 0.016 0 0 
Average 0.180 0.187 0.164 0.174 0.162 0.102 0.026 0.015 

(1) Random Forest # Error: classification error rate of Random Forest with s.e. = 0. (2) 

Random Forest # Error: classification error rate of Random Forest with s.e. = 1. (3) SC.s 

# Error: classification error rate of shrunken centroids with minimization of error and 

minimization of features if ties. (4) NN.vs # Error: classification error rate of nearest 

neighbor with variable selection. (5) CFS # Error: classification error rate of only 

correlation-based feature selection used. (6) CFS-BPSO # Error: classification error rate 

of correlation-based feature selection with binary particle swarm optimization. (7) 

CFS-TBPSO # Error: classification error rate of correlation-based feature selection with 

Taguchi - binary particle swarm optimization. Lowest classification error rates are in 

bold-type. 
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Table 9 Number of genes selected by the feature selection methods for the microarray data 

Method 

Dataset 

RF 
(s.e. = 0) 
# Genes  

RF 
(s.e. = 1) 
# Genes  

SC.s 
# Genes

NN.vs
# Genes

BPSO 
# Genes 

CFS 
# Genes

CFS-BPSO 
# Genes 

CFS-TBPSO* 

# Genes 

Leukemia 2 2 82 512 1335.8 44 4.1 3.9 

Breast 2 class 14 14 31 88 2309.1 62 29.5 28.3 

Breast 3 class 110 6 2166 9 2368.6 83 39.0 34.9 

NCI 60 230 24 5118 1718 2505.8 97 46.1 43.4 

Adenocarcinoma 6 8 0 9868 4599.0 52 19.1 15.9 

Brain 22 9 4177 1834 2527.7 146 48.8 45.0 

Colon 14 3 15 8 950.7 58 20.0 16.4 

Lymphoma 73 58 2796 15 1794.3 229 63.7 63.2 

Prostate 18 2 4 7 2963.6 63 23.4 22.8 

Srbct 101 22 37 11 1089 98 22.3 23.3 

(1) RF # Genes: number of genes selected for Random Forest with s.e. = 0. (2) RF # 

Genes: number of genes selected for Random Forest with s.e. = 1. (3) SC.s # Genes: 

number of genes selected for shrunken centroids with minimization of error and 

minimization of features if ties. (4) NN.vs # Genes: number of genes selected for 

nearest neighbor with variable selection. (5) BPSO #Genes: number of genes selected 

for binary particle swarm optimization (6) CFS # Genes: number of genes selected for 

correlation-based feature selection. (7) CFS-BPSO # Genes: number of genes selected 

for correlation-based feature selection with binary particle swarm optimization. (8) 

CFS-TBPSO # Genes: number of genes selected for correlation-based feature selection 

with Taguchi - binary particle swarm optimization. *:: the numbers shown here are 

average numbers produced over 10 trial runs. 
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Figure 10 Number of Selected genes 

 

Table 10 shows the best value, mean value, and standard deviation of the error 

classification rates for ten runs. The number of mean values that are equal to zero for 

BPSO/1NN, CFS-BPSO, and CGS-TBPSO are one, four, and six, respectively. The 

number of standard deviations that are equal to zero for BPSO/1NN, CFS-BPSO, and 

CGS-TBPSO are four, four, and seven, respectively. The other standard deviations of 

the error classification rates (Breast 2 class, Breast 3 class, and Prostate data set) 

approach zero. This shows that the proposed method is more stable than either 

BPS/1NN or CFS-BPSO/1NN. 
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Table 10 Comparison of Best, Mean and SD results for BPSO, CFS-BPSO and 

CFS-TBPSO 

BPSO CFS-BPSO CFS-TBPSO Method 
Dataset Best Mean SD Best Mean SD Best Mean SD 
Leukemia 0 0 0 0 0 0 0 0 0 
Breast 2 class 0.325 0.338 0.009 0.039 0.056 0.014 0.013 0.026 0.012
Breast 3 class 0.368 0.385 0.007 0.137 0.153 0.009 0.084 0.097 0.010
NCI 60 0.246 0.251 0.008 0.016 0.023 0.009 0 0 0 
Adenocarcinoma 0.158 0.158 0 0.013 0.014 0.004 0.013 0.013 0 
Brain 0.143 0.143 0 0 0 0 0 0 0 
Colon 0.177 0.189 0.011 0 0.013 0.007 0 0 0 
Lymphoma 0.016 0.016 0 0 0 0 0 0 0 
Prostate 0.088 0.100 0.006 0.010 0.017 0.003 0.010 0.014 0.005
Srbct 0.032 0.044 0.007 0 0 0 0 0 0 

SD: standard deviation. 

 

Figure 11 to Figure 20 show the graphs CFS-BPSO and CFS-TBPSO for 100 

generations for the ten microarray data. In these figures, a represents the number of 

iterations vs. the classification error rate, b represents the number of iterations vs. the 

number of genes selected. The dotted line represents CFS-BPSO, and continuous line 

represents CFS-TBPSO. Figure 21 (a) shows that the Taguchi method effectively avoids 

a local optimum at the 15th and 44th iteration. Thus, the Taguchi method had a lower 

classification error rate. Figure 21 (b) shows that although at the 55th iteration 

performance did not immediately improve, the Taguchi method still led particles 

beyond the regional solutions during subsequent iterations of the search. Finally, Figure 

22 to Figure 26 details the statistical performance of the ten independent runs in BPSO, 
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CFS-BPSO and CFS-TBPSO. It can be observed that CFS-TBPSO obtained the best 

solution for all data sets, and that its standard deviation was also the smallest. This 

proves that CFS-TBPSO obtains a globally optimal solution. 

  CFS-TBPSO produced error rate of zero for some data sets. The main reason for this 

zero error rate is the two-stage feature selection process for gene expression data. In the 

first stage, we aim at all features using a filter approach (CFS). CFS calculates a 

correction-based feature weight for each feature, and thus identifies relevant features. 

The feature weight is used to set a threshold value for filtering out noise data. In the 

second stage, a wrapper approach (TBPSO) is implemented to again selected features. 

Huang et al. [64] mention that selection of a minimal number of relevant genes 

improves classification performance. The experimental results of the proposed method 

proved that a low could indeed be obtained. The zero error rate produced by an 

evolutionary algorithms such as a genetic algorithm is not surprising in gene selection 

and classification problems. For the Leukemia data set, many studies have obtained a 

zero error rate with evolutionary algorithms, e.g. [65] and [66]. 

 

 

 

 

 

 



 

 52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of iterations

Er
ro

r r
at

e

CFS-BPSO CFS-TBPSO

 

Leukemia (a) 

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of iterations

N
um

be
r o

f g
en

es

CFS-BPSO CFS-TBPSO

 

Leukemia (b) 

Figure 11 Number of iterations vs. Classification error rate (a) and features (b) in 

Leukemia of microarray data 
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Figure 12 Number of iterations vs. Classification error rate (a) and features (b) in Breast 

2 class of microarray data 



 

 54

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of iterations

Er
ro

r r
at

e

CFS-BPSO CFS-TBPSO

 

Breast 3 class (a) 

30

32

34

36

38

40

42

44

46

48

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of iterations

N
um

be
r o

f g
en

es

CFS-BPSO CFS-TBPSO

 

Breast 3 class (b) 

Figure 13 Number of iterations vs. Classification error rate (a) and features (b) in Breast 

3 class of microarray data 
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NCI 60 (b) 

Figure 14 Number of iterations vs. Classification error rate (a) and features (b) in NCI 

60 of microarray data 
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Figure 15 Number of iterations vs. Classification error rate (a) and features (b) in 

Adenocarcinoma of microarray data 
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Figure 16 Number of iterations vs. Classification error rate (a) and features (b) in Brain 

of microarray data 
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Figure 17 Number of iterations vs. Classification error rate (a) and features (b) in Colon 

of microarray data 
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Lymphoma (b) 

Figure 18 Number of iterations vs. Classification error rate (a) and features (b) in 

Lymphoma of microarray data 
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Prostate (b) 

Figure 19 Number of iterations vs. Classification error rate (a) and features (b) in 

Prostate of microarray data 
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Srbct (b) 

Figure 20 Number of iterations vs. Classification error rate (a) and features (b) in Srbct 

of microarray data 
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(a) NCI 60 

 

 

(b) Colon 

Figure 21 Taguchi method effect in microarray data 
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Leukemia Breast 2 class 

Figure 22 Statistical performances of the different data sets in BPSO, CFS-BPSO and 

CFS-TBPSO for ten independent runs in Leukemia and Breast 2 class 

 

Breast 3 class NCI 60 

Figure 23 Statistical performances of the different data sets in BPSO, CFS-BPSO and 

CFS-TBPSO for ten independent runs in Breast 3 class and NCI 60 
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(e) Adenocarcinoma (f) Brain 

Figure 24 Statistical performances of the different data sets in BPSO, CFS-BPSO and 

CFS-TBPSO for ten independent runs in Adenocarcinoma and Brain 

 

(g) Colon (h) Lymphoma 

Figure 25 Statistical performances of the different data sets in BPSO, CFS-BPSO and 

CFS-TBPSO for ten independent runs Colon and Lymphoma 
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(i) Prostate (j) Srbct 

Figure 26 Statistical performances of the different data sets in BPSO, CFS-BPSO and 

CFS-TBPSO for ten independent runs in Prostate and Srbct 

 

4.3.1.1 Statistical analysis 

To investigate the statistical robustness of CFS-TBPSO, its classification accuracies 

were compared to the average classification accuracy of classification methods in two 

statistical tests, the Friedman test and the multiple comparison approach [67]. The 

Friedman test was used to test whether the accuracies of the different classification 

methods were equal. The multiple comparison approach was used to determine which 

method had significantly different accuracies if the Friedman test was rejected. 

 

Friedman Test 

The Friedman test is a nonparametric counterpart of the parametric two-way analysis 

of variance test and was used to compare the classification accuracy of the classification 

methods when the distribution of the underlying population was not specified. The 

hypothesis being tested was that all the methods had equal classification accuracy, and 
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the alternative hypothesis was that all methods did not have equal classification 

accuracy. Let Rij be the rank (from 1 to k) assigned to method j on problem i. It will 

equal 1 if it is the lowest value among the methods. In the case of ties, average ranks are 

used. The test statistic is defined by the following equations: 

where 
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The null hypothesis is rejected at the α significance level if the value of the test statistic 

exceeds the 1-α quantile of the F-distribution with k-1 and (n-1)(k-1) degrees of 

freedom. 

 

Multiple Comparison Approach 

The multiple comparison approach was used to determine which method had 

significantly different classification accuracy. Methods i and j are considered different if 

the following inequality is satisfied: 

)1)(1()(2)2( −−−>− knBAntRR ffij α  (17)

where Ri, Rj, Af, and Bf are given previously, and t(α/2) is a critical value on the t-table 

using (n-1)(k-1) degrees of freedom (α/2 = P(t > t(α/2))).  
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After the Friedman test, the calculated value of Tf = 19.65 is greater than the critical 

value of F0.05 (7, 63) = 2.507. We rejected the null hypothesis that all the methods had 

the same classification accuracy at a significance level of α = 0.05. After multiple 

comparisons were executed, the classification accuracies of the nine methods were 

ordered in an array, and a rank was assigned to each corresponding value according to 

its order. The rank sums of CFS-TBPSO, CFS-BPSO, CFS, SC.s, NN.vs, BPSO, RF 

(s.e.=1), and RF (s.e.=0) were 76.5, 70.5, 56.5, 39.0, 32.5, 31.5, 27.0, and 26.5, 

respectively; if the rank sums of any two methods are more than 12.79 units apart (with 

α = 0.05), they might be regarded as having unequal accuracy of prediction. Therefore, 

it can be concluded that the CFS-TBPSO, CFS-BPSO method is statistically superior to 

CFS, SC.s, NN.vs, BPSO, RF (s.e.=1), and RF (s.e.=0) methods for the data sets tested. 

 

4.3.2 Experiment of SNP data 

4.3.2.1 Accuracy estimation 

This chapter presents the common approach to appraise as medical diagnostic, 

namely, positive hit rate (i.e. Sensitivity), negative hit rate (i.e. Specificity) and 

accuracy rate. The accuracy using the binary class dataset can be demonstrated. As 

Table 11 shown, "+" represents some cases with the 'positive' class (with disease) be 

classified as positive correctly (i.e. True Positive, TP). Contrariously, some case with 

the 'positive' class be classified as negative (False Negative, FN). In contrast, if 

correctly predict some cases with the ‘negative class as negative (True Negative, TN). 

Contrariously, some case with the negative class be classified as positive (False Positive, 

FP). Sensitivity is the proportion of cases with positive class that are classified as 
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positive. On the other hand, the specificity is the proportion of cases with negative class 

that are classified as negative. The sensitivity and specificity are computed as formula 

(18) and (19). The accuracy rate is calculated as formula (20). 

FNTP
TPySensitivit
+

=  (18)

FPTN
TNySpecificit
+

=  (19)

FNTNFPTP
TNTPAccuracy

+++
+

=  (20)

 

Table 11 A prediction contingency table 

Class (or disease) 
 

+ - 
+ True Positive (TP) False Positive (FP) 

Predicted (or test) 
- False Negative (FN) True Negative (TN) 

 

4.3.2.2 Results 

In all the experiments including (non-feature selection) K nearest-neighbor, C4.5, 

random forest, support vector machine, naïve bayes and (feature selection) 

correlation-based feature selection with 5 nearest-neighbor classifier (CFS-5NN), and 

genetic algorithm with 5 nearest-neighbor classifier (GA-5NN) were constructed as 

implemented in Weka [38]. Those experiment results were estimated using the holdout 

cross validation in ten runs. To compare the accuracy of the proposed BPSO-KNN and 

TBPSO-KNN approach with these methods, the results were shown as Table 12 and 

Table 13. In Table 12 and Table 13, the average classification accuracy is 74.39±3.21 

for the TBPSO-KNN that is better than others. There is an interested result in Table 13, 
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after feature selection (CFS and GA) instead of increasing, the accuracy had declined. 

Table 13 shows the number of feature selected, the TBPSO-KNN selected subset is 

8.5±1.5 highger than CFS-5NN, GA-5NN. It might indicate CFS-5NN and GA-5NN to 

ignore some important attribute for classifier. The results show the K of 

Nearest-Neighbor, when K equals 5 the accuracy better than K equals 1 and 3. 

Therefore, we used 5NN classfier to estimate for CFS and GA. 

 

Table 12 Classification results on non-feature selection approach 

Classifier Sensitivity Specificity Accuracy 
1NN 43.49 ± 9.49 74.34 ± 9.49 62.55 ± 4.40 
3NN 45.33 ± 10.72 81.72 ± 10.72 67.86 ± 3.68 
5NN 47.46 ± 5.82 85.67 ± 5.82 71.12 ± 2.79 
C4.5 60.28 ± 6.27 74.81 ± 6.27 69.08 ± 4.23 
RF 53.11 ± 6.11 79.43 ± 6.11 69.29 ± 2.78 

SVM 55.95 ± 6.30 82.29 ± 6.30 72.14 ± 3.77 
NB 56.02 ± 5.82 83.16 ± 5.82 72.86 ± 3.62 

TBPSO-KNN 60.94 ± 5.80 82.30 ± 3.57 74.39 ± 3.21 

All sensitivities, specificities and accuracies are estimated using the holdout cross 

validation (i.e. train:test = 2:1). The results were shown as mean±standard deviation (ten 

runs). Boldfaced values highlight the best results. Each classifiers represent (1) NN: 

Nearest-Neighbor; (2) SVM: Support Vector Machine; (3) RF: Random Forest; (4) NB: 

Naïve Bayes; (5) BPSO-KNN: Our propose approach. 
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Table 13 Classification results on feature selection approach 

Classifier Feature selected Sensitivity Specificity Accuracy 
CFS-5NN 2.2 ± 0.40 54.34 ± 10.08 79.15 ± 6.66 69.69 ± 3.57
GA-5NN 5.9 ± 1.14 55.06 ± 5.13 79.55 ± 7.09 70.10 ± 5.04

BPSO-KNN 6.7 ± 1.55 61.53 ± 4.68 81.27 ± 5.16 73.78 ± 3.10
TBPSO-KNN 8.5 ± 1.5 60.94 ± 5.80 82.30 ± 3.57 74.39 ± 3.21

All sensitivities, specificities and accuracies are estimated using the holdout CV (i.e. 

train:test = 2:1), and The GA and BPSO as wrapper approach during traing step were 

used 10-fold CV. The results were shown as mean±standard deviation (ten runs). 

Boldfaced values highlight the best results. Each method represents (1) CFS-5NN: 

Correlation-based Feature Selection with 5 Nearest-Neighbor classifier; (2) GA-5NN: 

Genetic Algorithm with 5 Nearest-Neighbor classifier; (3) BPSO-KNN: Our propose 

approach. 

 

4.4 Discussion 

Many classifiers (e.g., K-NN, linear and quadratic discriminant analysis, support 

vector machine etc.) show good performance on microarray data. Each approach has its 

strong and weak points, so no single one can be considered ideal. As a classifier, K-NN 

performs well for cancer classification, compared to the more sophisticated classifiers. 

It is an easily implemented method that has a simple parameter (the number of nearest 

neighbors) to be pre-defined, given that the distance metric is Euclidean [68]. 

During the last decade, the advent of microarray data sets stimulated a new line of 

research in bioinformatics. To deal the challenges microarray data pose for 

computational techniques, feasible feature reduction techniques are needed. A general 
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overall feature selection approach can be found in [40]. Feature selection methods using 

a wrapper approach are very much dependent on the classifier or the pattern recognition 

approach used to assign the feature (gene) subset. On the other hand, filter approaches 

take only intrinsic features of the data into account. Finally, an embedded approaches 

similar to a wrapper approach has the advantage that it includes interactions with the 

classification model, while at the same time it is far less computationally intensive than 

a wrapper method [40]. However, Wang et al., [69] indicate that filter approaches can 

select more relevant feature subsets faster than wrapper approaches. On the other hand, 

wrapper approaches tend to obtain better classification accuracies in general. Inza, et al. 

[70] and Xiong et al. [71] used a wrapper approach to implement feature selection, and 

selected better feature subsets to boost classification accuracy. Nevertheless, optimal 

solutions are difficult to find due to the large size of search space if only a wrapper 

approach is used. In this section, we combined a filter and wrapper approach instead of 

other methods. CFS is a filter method that searches the entire feature space efficiently, 

and TBPSO is a wrapper method that uses an induction algorithm to evaluate the feature 

subsets directly. As stated above, wrapper methods generally outperform filter methods 

in terms of prediction accuracy rate. Since the individual advantages of wrapper and 

filter methods complement each other well [72]. We used a hybrid two-stage strategy to 

increase the classification accuracy. The Taguchi method implemented under the BPSO 

procedure is responsible for the local search. Taguchi method is a robust design 

approach, which used many ideas from statistical experimental design to improve 

optimize in products, processes and equipment [49]. The Taguchi principle is used to 

improve the quality of a product by minimizing the effect of the causes of variation 
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without eliminating these causes [49]. The two-level orthogonal array and the SNR of 

the Taguchi method are used for exploitation. The optimum particles can easily be 

found by using both experimental runs and SNRs instead of executing combinations all 

of factor levels. 

Consequently, a superior candidate feature subset with high classification 

performance for the classification task at hand, can be obtained in a subsequent iteration. 

In illustrative example is given in the example section. Since feature subsets b1 and b2 

have seven different features, 27=128 possible experimental trials have to be considered 

in a full factorial experimental design. OAs are used to decrease the number of 

experimental trials associated with these seven different features to eight (see Table 5). 

Prior to the classification process, feature subset evaluation efforts can thus be 

significantly reduced based on the two-dimensional, fractional factorial experimental 

design matrix. Features important and relevant for pattern classification can easily be 

identified. In this chapter, in order to avoid overfitting problem, the microarray data 

characteristically have a high dimension and small sample size, which is subsequently 

reduced by a filter feature selection method. After feature reduction, the LOOCV 

technique enhances the training data for classification in a wrapper-based feature 

selection method. 

In the K-NN parameter K, the best choice of the number of neighbors depends upon 

the data. Generally, larger values of K reduce the effect of noise on the classification, 

but make boundaries between classes less distinct. Also, Ghosh [75] indicated the 

suitable K depends on the specific data set and is to be computed using the available 

training sample observations. On the other hand, since the time complexity of K-NN is 
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O(Kn log n), the parameter K directly influences the performance efficiency. However, 

this thesis utilizes the BPSO to optimize parameter K that enhances classification and 

excludes manual setting or trial and error. 

Overfitting appears when computationally intensive search algorithms are used. 

Estimates may be overfitted and yield biased predictions under these circumstances [41]. 

If the training data lies too closely together, the classifier predictions are of poor quality. 

This occurs when there is insufficient data to train the classifier and the data does not 

fully cover the concept being learned. This problem is common in many real world 

samples where the available data may be rather noisy [42]. In order to avoid overfitting, 

some additional techniques have been discussed, such as cross-validation, regularization, 

and early termination or resampling [43, 44]. However the best way to avoid overfitting 

is to use an abundant amount of training data. The Figure 27 was shown the 

BPSO-KNN during search period, the training accuracy and testing accuracy were 

calculated each iteration. The result shows we can avoid the overfitting problem. 

Table 13 shows that the number of feature subset selected of three feature selection 

method in 10 runs. We can see clearly, the mainly frequency distribution on age, 

menopausal and TNFα-857 (SNP1). We also implement a filter approach – information 

gain to caluculate each feature score. In the 10 runs, there are only three score of feature 

highger than 0 which also age, menopausal and TNFα-857 (SNP1). However, our 

propsed approach not only these feature can seleted high frequency, but also selected 

other feature and improved accuracy. 
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Figure 27 The classification accuracies estimated during training and the accuracies for 

testing 

 

 
Figure 28 Number of feature subset selected in 10 runs 
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5. CONCLUSION AND FUTURE WORKS 

In this thesis, the disease prediction using machine learning is proposed, binary 

particle swarm optimization with K nearest-neighbor served as classifier for microarray 

and SNP profiles. In microarray application, this thesis is compared with the proposed 

approache that is against random forest, shrunken centroids and nearest neighbor 

methods with variable selection that have been used for classification and feature 

selection of large-dimensional microarray data sets. In addition, within the SNP 

application, we proposed a method to against K nearest-neighbor, C4.5, random forest, 

support vector machine, naïve bayes, correlation-based feature selection with 5 

nearest-neighbor and genetic algorithm with 5 nearest-neighbor were constructed from 

Weka. The experimental results for both of the classification accuracy and the selected 

numbers of features show that the proposed method has the most important features and 

the highest accuracy.It represents a superior role of feature selection (gene/SNPs 

selection) and classifier. The method can conceivably use in other research projects that 

implementing the feature selection. The outcome is successfully available to provide the 

medical disease prediction or feature selection of microarray/SNPs in the near future.  

This thesis proposed a binary particle swarm optimization for the feature selection 

and parameter optimization. The binary particle swarm optimization is a population 

based stochastic optimization technique. However, the generating random sequences 

with a long period and good uniformity are very important for a heuristic algorithm. 

Since chaos is non-repetitive, a heuristic algorithm can be embedded. Chaos can be 

described as the complex behavior of a nonlinear deterministic system that has ergodic 
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and stochastic properties [76]. Therefore, the stochastic optimization algorithm can be 

improved by using the chaotic theory. The classification problem, the K 

nearest-neighbor served as classifier. Recently, there are many supiror classifiers 

proposed such as: the support vector machine [77] and nearest shrunken centroids [78]. 

In order to enrich the classification accuracy, those classifiers can be used according to 

their data characteristics. Taguchi method is a statistical method devised for robust 

design of complex systems. It has been successfully applied in many manufacturing 

problems. The use of Taguchi method for a local search method in algorithm is 

illustrated in this thesis. It is use for parameter optimization [79], classifier optimization 

[26] or algorithm improvement design [80]. 
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